Acta Crystallographica Section E

Structure Reports

Online

Bis[5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine$\left.\kappa^{2} N, N^{\prime}\right]$ bis(nitrato- κO)cadmium(II)

ISSN 1600-5368

Naser Eltaher Eltayeb, ${ }^{\text {a }} \ddagger$
Siang Guan Teoh, ${ }^{\text {a }}$
Jeannie Bee-Jan Teh, ${ }^{\text {b }}$
Hoong-Kun Fun, ${ }^{\text {b }}$ *
Bohari M. Yamin ${ }^{\text {c }}$ and Kamarulazizi Ibrahim ${ }^{\text {d }}$

${ }^{\text {a }}$ School of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia, ${ }^{\text {b } X \text {-ray }}$ Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{\text {c School of Chemical Sciences and }}$ Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, and ${ }^{\mathrm{d}}$ School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
\# On study leave from International University of Africa, Sudan; e-mail: nasertaha90@hotmail.com.

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
R factor $=0.028$
$w R$ factor $=0.082$
Data-to-parameter ratio $=43.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the centrosymmetric title compound, $\left[\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}{ }^{-}\right.$ $\left(\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4}\right)_{2}$], the dihedral angle between the phenyl rings attached to one heterocycle is $54.13(5)^{\circ}$. The crystal structure is stabilized by $\mathrm{O} \cdots \mathrm{C}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions.

Comment

1,2,4-Triazine compounds are well known natural products and show interesting biological, pharmacological and medicinal properties. The 3,5,6-trisubstituted 1,2,4-triazines are a principal class of N -donor heterocyclic ligands. Some can be active as blood platelet aggregation inhibitors and others exhibit antiviral inhibitory activity, significant activity towards leukemia and ovarian cancer, and anti-HIV activity (Soudi et al., 2005; Mashaly et al., 1999). Also 1,2,4-triazine has been used in analytical chemistry to determine the concentration of some trace metal ions (Almog et al., 1996; Croot \& Hunter, 2000). Recently we have reported the crystal structure of the $\mathrm{Mn}^{\text {II }}$ complex with 5,6 -diphenyl-3-(2-pyridyl)-1,2,4-triazine (Eltayeb et al., 2006). Now we report the crystal of the $\mathrm{Cd}^{\mathrm{II}}$ complex with the same ligand.

The bond lengths and angles in (I) have normal values (Allen et al., 1987), comparable to a related structure (Eltayeb et al., 2006). The chelate ring ($\mathrm{Cd} 1 / \mathrm{N} 1 / \mathrm{C} 5 / \mathrm{C} 6 / \mathrm{N} 2$) is planar, with a maximum deviation of 0.070 (1) \AA for atom C6. The dihedral angle between the two phenyl rings is $54.13(5)^{\circ}$.
The relatively short distance [2.940 (1) Å] between atoms O 3 and $\mathrm{C} 7\left(\frac{3}{2}-x, \frac{1}{2}-y,-z\right)$ indicates the presence of intermolecular $\mathrm{O} \cdots \mathrm{C}$ interactions, which contribute to the stabilization of the crystal structure, along with $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions, the latter involving the $\mathrm{C} 8-\mathrm{C} 13$ phenyl

Received 9 November 2006
Accepted 9 November 2006

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The suffix A indicates the symmetry code $\left(\frac{3}{2}-x, \frac{3}{2}-y,-z\right)$.
ring (Table 1). $C g$ is the C8-C13 ring centroid. The crystal structure is further stabilized by $\pi-\pi$ interactions, in which the centroid-centroid distance between the $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5$ rings at $(x$, $y, z)$ and $(2-x, 1-y,-z)$ is $3.606(1) \AA$, and that between the $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5$ ring at (x, y, z) and the $\mathrm{C} 15-\mathrm{C} 20$ ring at $\left(\frac{1}{2}+x\right.$, $\frac{1}{2}+y, z$) is 3.727 (1) \AA.

Experimental

To a solution of 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine (0.31 g , $1 \mathrm{mmol})$ in ethanol (20 ml) was added cadmium nitrate tetrahydrate $(0.154 \mathrm{~g}, 0.5 \mathrm{mmol})$. The mixture was refluxed for 1 h . The resulting pale-yellow solution was filtered and left to evaporate slowly at room temperature. Yellow crystals suitable for X-ray diffraction were obtained after two weeks (m.p. 559-561 K). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $\nu(\mathrm{C}-\mathrm{H})$ $3070,3040, \nu(\mathrm{C}=\mathrm{N}) 1618, \nu(\mathrm{C}=\mathrm{C}) 1599,1574,1509, \nu_{\text {asym }}(\mathrm{N}-\mathrm{O})$ 1482, $v_{\text {sym }}(\mathrm{N}-\mathrm{O}) 1384, \nu(\mathrm{C}-\mathrm{N}) 1255$.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4}\right)_{2}\right]} \\
& M_{r}=857.12 \\
& \text { Monoclinic, } C 2 / c \\
& a=15.8191(2) \AA \\
& b=8.4756(1) \AA \\
& c=26.8765(4) \AA \\
& \beta=94.809(1)^{\circ} \\
& V=3590.82(8) \AA^{3}
\end{aligned}
$$

Data collection

Bruker SMART APEX-2 CCD diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2005)

$$
T_{\min }=0.817, T_{\max }=0.923
$$

Refinement

[^1]

Figure 2
The crystal packing of (I), viewed down the b axis. Dashed lines indicate hydrogen bonds.

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.41	$3.309(2)$	162
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O}^{\text {ii }}$	0.93	2.47	$3.337(1)$	155
$\mathrm{C} 13-\mathrm{H} 13 A \cdots C g^{\text {iii }}$	0.93	3.06	$3.672(1)$	125
$\mathrm{C} 17-\mathrm{H} 17 A \cdots C g^{\text {iv }}$	0.93	3.16	$3.852(1)$	132

Symmetry codes: (i) $x+\frac{1}{2}, y+\frac{1}{2}, z$; (ii) $-x+2,-y+1,-z$; (iii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (iv) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.

H atoms were positioned geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

The authors thank the Malaysian Government, Academy of Sciences Malaysia and Universiti Sains Malaysia for research grants and facilities. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Almog, J., Hirshfeld, A., Glattstein, B., Sterling, J. \& Goren, Z. (1996). Anal. Chim. Acta, 322, 203-208.
Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
Croot, P. L. \& Hunter, K. A. (2000). Anal. Chim. Acta, 406, 289-302.
Eltayeb, N. E., Guan, T. S. \& Yamin, B. M. (2006). Acta Cryst. E62, m2284m2286.
Mashaly, M., Bayoumi, H. A. \& Taha, A. (1999). J. Serb. Chem. Soc. 64, 621635.

Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Soudi, A. A., Marandi, F., Morsali, A., Kempe, R. \& Hertle, I. (2005). J. Coord. Chem. 58, 1631-1637.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
 $w R\left(F^{2}\right)=0.082$
 $S=1.13$
 11133 reflections
 259 parameters
 H -atom parameters constrained

